Recitation 9. May 11

Focus: probability (discrete and continuous), random variables, principal component analysis (PCA)
A random variable is a quantity X that takes values in \mathbb{R}. It can be either:

- discrete: X takes only countably many possible values x_{i} each with probability p_{i}
- continuous: X is associated to a probability distribution $p(x)$ (where $p: \mathbb{R} \rightarrow \mathbb{R}$ is a function).

The mean (sometimes called "expected value") $E[X]$ of X is the quantity:

- $\sum_{i} x_{i} p_{i}$ if X is discrete
- $\int_{-\infty}^{\infty} x p(x) d x$ if X is continuous

The mean is linear: if X, Y are random variables and $a, b \in \mathbb{R}$, then $E[a X+b Y]=a E[X]+b E[Y]$.
Given two random variables X, Y, their covariance $\Sigma_{X Y}=E[(X-E[X])(Y-E[Y])]$ is:

- $\sum_{i j} p_{i j}\left(x_{i}-\mu\right)\left(y_{j}-\nu\right)$ if X is discrete
- $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty}(x-\mu)(y-\nu) p(x, y) d x d y$ if X is continuous

The covariance of X with itself is called the variance $\Sigma_{X X}$.
Given n random variables X_{1}, \ldots, X_{n}, we may assemble them into a vector $\boldsymbol{X}=\left[\begin{array}{c}X_{1} \\ \vdots \\ X_{n}\end{array}\right]$, called a random vector .
The covariance matrix of these random variables X_{1}, \ldots, X_{n} is the matrix

$$
K=\left[\begin{array}{ccc}
\Sigma_{X_{1} X_{1}} & \cdots & \Sigma_{X_{1} X_{n}} \\
\vdots & \ddots & \vdots \\
\Sigma_{X_{n} X_{1}} & \cdots & \Sigma_{X_{n} X_{n}}
\end{array}\right]=E\left[(\boldsymbol{X}-\boldsymbol{\mu})(\boldsymbol{X}-\boldsymbol{\mu})^{T}\right], \quad \text { where } \quad \boldsymbol{\mu}=E[\boldsymbol{X}]=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right]=\left[\begin{array}{c}
E\left[X_{1}\right] \\
\vdots \\
E\left[X_{n}\right]
\end{array}\right]
$$

K is always positive semidefinite. It is positive definite unless a linear combination of X_{1}, \ldots, X_{n} is constant. Principal component analysis (PCA) involves diagonalizing the covariance matrix:

$$
K=Q D Q^{T}
$$

where Q is orthogonal and D is diagonal. This means that the random vector $\boldsymbol{Y}=Q^{T} \boldsymbol{X}$ has diagonal covariance $\operatorname{matrix} D$, i.e. its entries are uncorrelated random variables (i.e. have covariance 0). In other words:

$$
\boldsymbol{Y}=\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right]=\left[\begin{array}{ccc}
q_{11} & \cdots & q_{n 1} \\
\vdots & \ddots & \vdots \\
q_{1 n} & \cdots & q_{n n}
\end{array}\right]\left[\begin{array}{c}
X_{1} \\
\vdots \\
X_{n}
\end{array}\right] \quad \Rightarrow \quad\left\{Y_{i}=q_{1 i} X_{1}+\cdots+q_{n i} X_{n}\right\}_{i \in\{1, \ldots, n\}}
$$

are linear combinations of X_{1}, \ldots, X_{n} that are (by construction) uncorrelated. The individual variances of the random variables Y_{1}, \ldots, Y_{n} are the diagonal entries of the diagonal matrix D.

1. Sample from the numbers 1 to 1000 with equal probabilities $1 / 1000$, and look at the last digit of the sample, squared. This square can end with $X=0,1,4,5,6$, or 9 . What are the probabilities $p_{0}, p_{1}, p_{4}, p_{5}, p_{6}$ and p_{9} that each of these digits occurs among the sample? Compute the mean and variance of X.

Solution: If $n=10 k$, then the last digit of n^{2} will be 0 . If $n=10 k+1$ or $n=10 k+9$, then the last digit of n^{2} will be 1. If $n=10 k+2$ or $n=10 k+8$, then the last digit of n^{2} will be 4 . If $n=10 k+3$ or $n=10 k+7$, then the last digit of n^{2} will be 9 . If $n=10 k+4$ or $n=10 k+6$, then the last digit of n^{2} will be 6 . If $n=10 k+5$, then the last digit of n^{2} will be 5 . Thus,

$$
p_{0}=\frac{1}{10} \quad p_{1}=\frac{1}{5} \quad p_{4}=\frac{1}{5} \quad p_{5}=\frac{1}{10} \quad p_{6}=\frac{1}{5} \quad p_{9}=\frac{1}{5}
$$

We therefore see that the mean is

$$
E[X]=0 \cdot \frac{1}{10}+1 \cdot \frac{1}{5}+4 \cdot \frac{1}{5}+5 \cdot \frac{1}{10}+6 \cdot \frac{1}{5}+9 \cdot \frac{1}{5}=\frac{9}{2}
$$

and the variance

$$
E\left[\left(X-\frac{9}{2}\right)^{2}\right]=\left(0-\frac{9}{2}\right)^{2} \frac{1}{10}+\left(1-\frac{9}{2}\right)^{2} \frac{1}{5}+\left(4-\frac{9}{2}\right)^{2} \frac{1}{5}+\left(5-\frac{9}{2}\right)^{2} \frac{1}{10}+\left(6-\frac{9}{2}\right)^{2} \frac{1}{5}+\left(9-\frac{9}{2}\right)^{2} \frac{1}{5}=\frac{181}{20}
$$

2. Let A, H, and W denote random variables corresponding to the age, height, and weight of dogs at a local shelter, respectively. Suppose the random vector $\left[\begin{array}{c}A \\ H \\ W\end{array}\right]$ takes two values, $\left[\begin{array}{c}7 \\ 20 \\ 132\end{array}\right]$ and $\left[\begin{array}{c}4 \\ 24 \\ 120\end{array}\right]$ with probabilities p and $1-p$ respectively. Compute the covariance matrix of A, H, and W.

Solution: The mean of the random vector (i.e. the vector of means) is:

$$
\boldsymbol{\mu}=\left[\begin{array}{l}
\mu_{A} \\
\mu_{H} \\
\mu_{W}
\end{array}\right]=p\left[\begin{array}{c}
7 \\
20 \\
132
\end{array}\right]+(1-p)\left[\begin{array}{c}
4 \\
24 \\
120
\end{array}\right]=\left[\begin{array}{c}
3 p+4 \\
24-4 p \\
12 p+120
\end{array}\right]
$$

Then the covariances are given by:

$$
\begin{aligned}
\Sigma_{A A} & =E\left[\left(A-\mu_{A}\right)^{2}\right]=p(7-(3 p+4))^{2}+(1-p)(4-(3 p+4))^{2}=9 p(1-p) \\
\Sigma_{H H} & =E\left[\left(H-\mu_{H}\right)^{2}\right]=p(20-(24-4 p))^{2}+(1-p)(24-(24-4 p))^{2}=16 p(1-p) \\
\Sigma_{W W} & =E\left[\left(W-\mu_{W}\right)^{2}\right]=p(132-(12 p+120))^{2}+(1-p)(120-(12 p+120))^{2}=144 p(1-p) \\
\Sigma_{A H} & =E\left[\left(A-\mu_{A}\right)\left(H-\mu_{H}\right)\right]= \\
& =p(7-(3 p+4))(20-(24-4 p))+(1-p)(4-(3 p+4))(24-(24-4 p))=-12 p(1-p) \\
\Sigma_{A W} & =E\left[\left(A-\mu_{A}\right)\left(W-\mu_{W}\right)\right]= \\
& =p(7-(3 p+4))(132-(12 p+120))+(1-p)(4-(3 p+4))(120-(12 p+120))=36 p(1-p) \\
\Sigma_{H W} & =E\left[\left(H-\mu_{H}\right)\left(W-\mu_{W}\right)\right]= \\
& =p(20-(24-4 p))(132-(12 p+120))+(1-p)(24-(24-4 p))(120-(12 p+120))=-48 p(1-p)
\end{aligned}
$$

and so the covariance matrix is:

$$
K=p(1-p)\left[\begin{array}{ccc}
9 & -12 & 36 \\
-12 & 16 & -48 \\
36 & -48 & 144
\end{array}\right]
$$

3. Suppose now that the random variables A, H, W from above instead have the covariance matrix

$$
K=\left[\begin{array}{ccc}
3 & -1 & 2 \\
-1 & 3 & -2 \\
2 & -2 & 6
\end{array}\right]
$$

Find three linear combinations of A, H, W which are pairwise uncorrelated random variables. What is the variance of each?

Solution: We begin by diagonalizing K. Its characteristic polynomial is:

$$
p_{K}(\lambda)=(3-\lambda)((3-\lambda)(6-\lambda)-4)+((-1)(6-\lambda)+4)+2(2-2(3-\lambda))=(2-\lambda)^{2}(8-\lambda)
$$

so the eigenvalues of K are 2 (with multiplicity 2) and 8 . We now find a basis of eigenvectors. Since:

$$
K-8 I=\left[\begin{array}{ccc}
-5 & -1 & 2 \\
-1 & -5 & -2 \\
2 & -2 & -2
\end{array}\right]
$$

from which we deduce that $\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ spans the null space of $K-8 I$. Thus, $\frac{1}{\sqrt{6}}\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ is an eigenvector (of norm 1) of K corresponding to eigenvalue 8 . Similarly, we have that:

$$
K-2 I=\left[\begin{array}{ccc}
1 & -1 & 2 \\
-1 & 1 & -2 \\
2 & -2 & 4
\end{array}\right]
$$

from which we deduce that $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ span the null space of $K-2 I$; moreover, these vectors are orthogonal (in this case, it was fairly easy to find a pair of orthogonal vectors spanning the null space by inspection, but in general you can always row reduce to find a basis for the null space and then apply Gram-Schmidt).

Thus, we have that $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$ and $\frac{1}{\sqrt{3}}\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ form an orthonormal basis for the eigenspace for eigenvalue 2 . We therefore have:

$$
\begin{aligned}
K & =\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]^{T} \\
& =\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{3}} \\
-\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{3}} \\
\frac{2}{\sqrt{6}} & 0 & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right] .
\end{aligned}
$$

This means that the random vector

$$
\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\
-\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{c}
A \\
H \\
W
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{\sqrt{6}} A-\frac{1}{\sqrt{6}} H+\frac{2}{\sqrt{6}} W \\
\frac{1}{\sqrt{2}} A+\frac{1}{\sqrt{2}} H \\
-\frac{1}{\sqrt{3}} A+\frac{1}{\sqrt{3}} H+\frac{1}{\sqrt{3}} W
\end{array}\right]
$$

consists of random variables which are pairwise uncorrelated. Their variances are, respectively, 8,2 and 2 .
This process is known as principal component analysis. Note that because the covariance matrix in $\# 2$ has rank 2, it has 0 as an eigenvalue. Therefore, by a similar analysis we find that there must be a linear combination in that case of A, H, W which has variance 0 , i.e. it is a constant.
4. Let X be a random variable, with mean μ and variance σ^{2}. Compute $E\left[X^{2}\right]$ in terms of μ and σ.

Solution: We have:

$$
\sigma^{2}=\Sigma_{X X}=E\left[(X-\mu)^{2}\right]=E\left[X^{2}-2 \mu X+\mu^{2}\right]=E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} E[1]=E\left[X^{2}\right]-2 \mu^{2}+\mu^{2}=E\left[X^{2}\right]-\mu^{2},
$$

By adding μ^{2} to both sides of the equation above, we get $E\left[X^{2}\right]=\sigma^{2}+\mu^{2}$.

